前沿进展:针对新冠病毒,Nature/Science/Cell期刊最新研究进展

前沿进展:针对新冠病毒,Nature/Science/Cell期刊最新研究进展

前言

自2019年12月8日以来,中国湖北省武汉市报告了几例病因不明的肺炎。大多数患者在当地的华南海鲜批发市场工作或附近居住。在这种肺炎的早期阶段,严重的急性呼吸道感染症状出现了,一些患者迅速发展为急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)、急性呼吸衰竭和其他的严重并发症。2020年1月7日,中国疾病预防控制中心(China CDC)从患者的咽拭子样本中鉴定出一种新型冠状病毒,最初被世界卫生组织(WHO)命名为2019-nCoV。大多数2019-nCoV肺炎患者的症状较轻,预后良好。到目前为止,一些患者已经出现严重的肺炎,肺水肿,ARDS或多器官功能衰竭和死亡。
 

 

SARS-CoV-2(之前称为2019-nCoV)的透射电镜图,图片来自NIAID RML。


2020年2月11日,世卫组织将这种疾病病重命名为2019年冠状病毒病(COVID-19)。同一天,负责分类和命名病毒的的国际病毒分类学委员会的冠状病毒研究小组在bioRxiv上发表了一篇文章,指出该研究小组已经决定,新型冠状病毒2019-nCoV是导致2002-2003年爆发严重急性呼吸综合征(SARS)冠状病毒(SARS-CoV)的变种。因此,将这种新病原体重新命名为严重急性呼吸综合征冠状病毒2号(severe acute respiratory syndrome coronavirus 2),或SARS-CoV-2。值得注意的一点是,尽管国际病毒分类委员会冠状病毒研究小组将病毒命名为SARS-CoV-2,但该研究小组主席John Ziebuhr认为这个名字(SARS-CoV-2)和SARS(严重急性呼吸综合征,也称非典型肺炎)没有关联。不过,这种病毒的重新命名引起了不少争议。据《科学》网站报道,世界卫生组织不满意SARS-CoV-2这个名字,而且不打算采用此名称。

冠状病毒可引起多种动物的多系统感染。在此之前已有6种冠状病毒可以感染人类,它们主要引起人类的呼吸道感染:两种高度致命性的冠状病毒,即严重急性呼吸道综合征(SARS)冠状病毒(SARS-CoV)和中东呼吸综合征(MERS)冠状病毒(MERS-CoV);4种可导致温和的上呼吸道疾病的冠状病毒,即HCoV-OC43、HCoV-229E、HCoV-NL63和HCoV-HKU1。

Nature

 

基于此次疫情给中国和全世界带来严重的危害,小编针对Nature期刊上发表的2019-nCoV/COVID-19研究进行一番梳理,以飨读者。

1.Nature:SARS-CoV-2蛋白相互作用图揭示了药物再利用的靶点
doi:10.1038/s41586-020-2286-9


新型冠状病毒SARS-CoV-2,是导致COVID-19呼吸道疾病的病原体,已经感染了230多万人,死亡16万多人,并在全球范围内造成了社会和经济混乱。目前还没有临床疗效确切的抗病毒药物,也没有预防它的疫苗,而开发药物和疫苗的努力因对SARS-CoV-2感染的分子细节的认识有限而受到阻碍。为了解决这个问题,研究人员在人体细胞中克隆、标记和表达了29种SARS-CoV-2蛋白中的26种,并利用亲和纯化质谱(AP-MS)鉴定了与每种蛋白物理上相互作用的人类蛋白,确定了332种高可信度的SARS-CoV-2-人类蛋白-蛋白相互作用(PPI)。其中,他们确定了可69种化合物(29种FDA批准的药物、12种临床试验中的药物和28种临床前化合物)靶向的66种人类蛋白或宿主因子。在多种病毒检测中筛选其中的一部分化合物,确定了两组显示出抗病毒活性的药理药物:mRNA翻译的抑制剂和预测的针对Sigma1和Sigma2受体的调节剂。对这些靶向宿主因子的试剂的进一步研究,包括它们与直接靶向病毒酶的药物联合使用,可能导致开发出治疗COVID-19的治疗方案。

2.Nature:探究武汉两所医院SARS-CoV-2气动力分析
doi:10.1038/s41586-020-2271-3


正在爆发的COVID-19疫情已在全球范围内迅速蔓延。虽然SARS-CoV-2通过人的呼吸道飞沫和直接接触传播的传播途径很明显,但对气溶胶传播的可能性了解甚少。在一项新的研究中,我国研究人员通过测量2020年2月和3月COVID-19疫情期间武汉两所医院不同区域的气溶 胶中病毒RNA的含量,调查了SARS-CoV-2的空气动力学性质。在隔离病房和通风的病人房间中检测到的气溶胶中SARS-CoV-2 RNA的浓度很低,但在病人的卫生间区域中,SARS-CoV-2 RNA的浓度却有所升高。除了在两个容易拥挤的区域外,大部分公共区域的空气传播的 SARS-CoV-2 RNA含量都无法检测到,这可能是由于人群中的病毒携带者在人群中感染所致。他们发现,一些医务人员区域最初的病毒RNA浓度较高,气溶胶大小分布显示出亚微米及/或超微米区域的峰值,但在实施严格的消毒程序后,这些水平已降至无法检测到。虽然他 们没有确定在这些医院区域检测到的病毒的传染性,但他们提出SARS-CoV-2有可能通过气溶胶传播。这些研究结果表明,房间通风、开阔的空间、防护服的消毒,以及厕所区域的正确使用和消毒可以有效地限制气溶胶中SARS-CoV-2 RNA的浓度。今后的工作应探讨气溶胶 病毒的传染性。

3.Nature:人口流动驱动了COVID-19在中国的时间和空间分布
doi:10.1038/s41586-020-2284-y


突发性、大规模和扩散性的人口迁移可以将局部的疫情扩大为广泛的流行病。因此,对总的人口流动进行迅速和准确的追踪,可能提供流行病学方面的信息。在一项新的研究中,我国研究人员利用手机数据对2020年1月1日至1月24日期间从武汉市迁往中国296个县的 11478484人进行了统计。首先,他们记录了隔离措施在停止人口流动中的功效。第二,他们发现,从武汉地区人口流出的分布情况可以准确预测到2020年2月19日之前全中国各地COVID-19感染的相对频率和地域分布。第三,他们开发了一个时空 "风险源 "模型,利用人口 流动数据(可操作性地预测来自疫情中心的风险),不仅可以预测确诊病例,还可以在早期识别高传播风险地区。第四,他们利用这个风险源模型,根据武汉市人口流出的情况,统计得出COVID-19的地理分布和增长模式,得出了不同地区COVID-19社区传播风险的基准趋 势和评估指标。任何国家的政策制定者都可以利用这种方法,利用现有数据进行快速、准确的风险评估,并在持续的疫情爆发前对有限的资源分配进行规划。

4.Nature:当COVID-19症状相对较轻时,患者较高水平地脱落病毒SARS-CoV-2
doi:10.1038/s41586-020-2196-x


在一项新的研究中,来自德国联邦国防军微生物研究所、慕尼黑施瓦宾格医院、柏林大学夏丽特医学院和慕尼黑大学医院的研究人员详细分析了来自德国慕尼黑的9名患上COVID-19呼吸道疾病且症状相对较轻的成年患者。这项研究表明冠状病毒SARS-CoV-2在这些患者的上 呼吸道中活跃复制,这表明患者在症状出现的第一周内可能较高水平地‘脱落’或者说排泄这种病毒。相关研究结果于2020年4月1日在线发表在Nature期刊上,论文标题为“Virological assessment of hospitalized patients with COVID-2019”。

 

 

图片来自Nature, 2020, doi:10.1038/s41586-020-2196-x。


论文共同通讯作者Christian Drosten及其同事们研究了9名诊断为COVID-19的中青年成年人的病毒脱落情况,这些患者因轻度上呼吸道症状在慕尼黑的一家医院接受治疗。他们分析了在临床治疗过程中从这些患者体内采集的喉部和肺部样本、痰液(即呼吸道粘液)、粪 便、血液和尿液。

这些作者发现在上呼吸道组织中SARS-CoV-2病毒复制水平较高,并且报告在症状发作的第一周内在上呼吸道中病毒脱落的水平也较高。他们都可以从这些患者体内采集的喉咙和肺部样本中分离出这种病毒的传染性形式,直到症状消失的第八天。其中的两名表现出一些早 期肺炎症状的患者持续在痰液中脱落较高水平的SARS-CoV-2直到症状消失的第十天或第十一天。在症状结束后,痰液中仍可检测到这种病毒的RNA。

血液和尿液样本中未检测到这种病毒,而且这些作者发现粪便样本中虽然存在较高浓度的病毒RNA,但是并未发现这种病毒的复制形式,这支持了它可能无法通过粪便传播的理论。但是,还需要在较大样本中进一步研究这种可能的传播途径。

5.重磅!两篇Nature揭示SARS-CoV-2结合ACE2受体的晶体结构
doi:10.1038/s41586-020-2180-5; doi:10.1038/s41586-020-2179-y


一种新型高致病性冠状病毒(SARS-CoV-2)自2019年12月以来肆掠全球,应对这一疫情的关键是了解病毒的受体识别机制,调节其感染性、发病机制和宿主范围。而在分子和原子水平了解SARS-CoV-2如何感染细胞有利于科学家们更快开发出更有效地预防或者治疗性药物。

3月30日,Nature杂志在线发表了两项最新研究,揭示了SARS-CoV-2识别和结合人ACE2的机制及形成的复合物的晶体结构,两项研究分别为清华大学王新泉课题组和张林琦课题组合作发表的"Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor"以及明尼苏达大学李放教授课题组发表的"Structural basis of receptor recognition by SARS-CoV-2"。

为了在原子水平上更好地理解感染的初始步骤,我们王新泉课题组和张林琦课题组以2.45 A的分辨率确定了与细胞受体ACE2结合的SARS-CoV-2 刺突蛋白受体结合域(spike receptor binding domain,RBD)的晶体结构。SARS-CoV-2 RBD和ACE2的整体结合模式与SARS-CoV RBD几乎相同,后者也利用ACE2作为细胞受体。研究人员在SARS-CoV-2 RBD中结构分析发现了对ACE2结合至关重要的残基,其中大部分要么高度保守,要么与SARS-CoV RBD中的残基具有类似的侧链性质。研究人员发现虽然SARS-CoV-2不会在SARS和SARS相关的冠状病毒中聚 集,但这种结构和序列上的相似性有力地证明了SARS-CoV-2和SARS-CoV RBDs之间的趋同进化可以改善它们与ACE2的结合。研究人员还分析了以RBD为靶点的两种SARS-CoV抗体的表位,为今后交叉反应性抗体的鉴定提供了思路。

在另一项研究中,李放教授课题组确定了与hACE2配合物中SARS-CoV-2受体结合域(RBD)的晶体结构(利用一种可以促进结晶的工程化RBD)。研究人员发现与SARS-CoV RBD相比,在SARS-CoV-2 RBD中,hACE2的结合具有更紧密的构象;此外,SARS-CoV-2 RBD中的几个残基变 化稳定了RBD/hACE2界面上的两个病毒结合热点。SARS-CoV-2 RBD的这些结构特征增强了其与hACE2的结合亲和力。此外,研究人员还发现与SARS-CoV-2密切相关的蝙蝠冠状病毒RaTG13也使用hACE2作为其受体。在hACE2识别中,SARS-CoV-2、SARS-CoV和RaTG13的差异揭示 了SARS-CoV-2在动物和人类之间潜在的传播途径。本研究为SARS-CoV-2靶向受体识别的干预策略提供指导。

总的来说,这两项研究利用X光晶体衍射技术,揭示了SARS-CoV-2与ACE2结合的微观晶体结构,有助于科学家了解ACE2受体介导的SARS-CoV-2识别和感染细胞的过程,可以加快科学家开发治疗性药物和疫苗的进程。

6.全文编译!中科院武汉病毒所石正丽课题组发表Nature发文揭示正在中国肆虐的肺炎疫情很可能由蝙蝠起源的新型冠状病毒导致
doi:10.1038/s41586-020-2012-7


在过去的二十年中,冠状病毒已引起两次大规模疫情:严重急性呼吸综合征(SARS)和中东呼吸综合征(MERS)。一般认为,主要在蝙蝠中发现的SARS 相关冠状病毒(SARSr-CoV)可能会导致未来疫情暴发。

在一项新的研究中,来自中国科学院武汉病毒研究所、武汉金银潭医院和湖北省疾病预防控制中心的研究人员报道了位于中国中部的湖北省武汉市发生了一系列病因不明的肺炎疫情。从当地的一家海鲜市场开始,到2020年1月26日为止,疫情已蔓延至中国有2050人感染, 其中56人死亡,其他11个国家有35人感染。相关研究结果于2020年2月3日在线发表在Nature期刊上,论文标题为“A pneumonia outbreak associated with a new coronavirus of probable bat origin”。重要的是,Nature期刊在2020年1月20年收到这篇论文的手稿,1 月29日就接受了这篇论文,并以“加快评审文章(Accelerated Article Preview)”的形式在线发表了这篇论文。论文通讯作者为中国科学院武汉病毒研究所石正丽(Zheng-Li Shi)研究员。

 

 

2019-nCoV的基因组特征,图片来自Nature, 2020, doi:10.1038/s41586-020-2012-7。


这些患者的典型临床症状是发烧、干咳、呼吸困难、头痛和肺炎。疾病发作后可因肺泡损伤导致进行性呼吸衰竭(如横向胸部CT图像所观察到的那样),甚至死亡。根据临床症状和其他标准,包括临床体温升高,淋巴细胞和白细胞减少(有时白细胞正常),胸部X光片上 出现新的肺部浸润,三天抗生素治疗无明显好转,临床医师将这种疾病确定为病毒性肺炎。大多数早期病例似乎都与最初的那家海鲜市场有接触史,但是如今这种疾病已发展为人与人之间的传播。

在疫情开始时就进入了重症监护病房(ICU)的7名重症肺炎患者(其中有6名是海鲜市场销售者或送货者)的样本被送至中国科学院武汉病毒研究所(WIV)实验室进行病原体诊断。考虑这次疫情发生的环境与SARS相同,即在冬季和在一家海鲜市场里,石正丽及其课题组 在冠状病毒(CoV)实验室中首先使用泛冠状病毒PCR引物来测试这些样本。他们发现了5个PCR阳性样本。通过使用下一代测序(NGS)对从支气管肺泡灌洗液(BALF)中收集的样本(WIV04)进行宏基因组分析以鉴定潜在的病原体。

在总共10038758个读取片段(read),或者说人类基因组过滤后的总共1582个读取片段中,有1378个读取片段与SARSr-CoV序列相匹配(图1a)。通过从头组装和靶向PCR,他们获得了一个大小29891bp的冠状病毒基因组,它与SARS-CoV BJ01(GenBank登录号AY278488.2) 具有79.5%的序列一致性(sequence identity)。将这些1582个读取片段与所获得的基因组进行重新映射可取得较高的基因组覆盖。这个基因组序列已被提交GISAID网站(登录号EPI_ISL_402124)。根据世界卫生组织(WHO)的名称,他们暂时将它称为新型冠状病毒 2019(2019-nCoV)。随后从其他四名患者中使用下一代测序和PCR获得了另外四个2019-nCoV全长基因组序列(WIV02,WIV05,WIV06和WIV07)(GISAID登录号EPI_ISL_402127-402130),彼此之间的一致性高于99.9%。

这项研究提供了关于2019-nCoV的第一份详细报道,其中2019-nCoV是造成中国中部武汉市正在发生的急性呼吸道综合征疫情的可能病因。在所有测试的患者中观察到的病毒特异性核苷酸阳性和病毒蛋白血清转化提供了这种疾病与这种病毒的存在之间存在关联性的证据。但是,仍然有许多紧急问题需要解决。尚未通过动物实验来证实2019-nCoV与这种疾病之间的关联性以充分符合科赫法则(Koch's Postulates)。他们还不知道这种病毒在宿主之间的传播途径。这种病毒似乎在人与人之间传播的可能性越来越大了。人们应当密切监视这 种病毒是否继续演变成更强的毒性。由于缺乏特异性治疗,并考虑到SARS-CoV与2019-nCoV之间的亲缘性,一些针对SARS-CoV的药物和临床前疫苗可能可以用于抵抗这种病毒。最后,考虑到SARSr-CoV在它们的天然病毒库中的广泛传播,未来的研究应当集中在更广泛的地 理区域对它们进行主动监视。从长远来看,应当为这类病毒引起的未来新兴传染病准备广谱抗病毒药物和疫苗。最重要的是,应对野生动物的驯养和消费制定严格的法规。

7.全文编译!复旦大学张永振课题组发表Nature论文揭示新型冠状病毒2019-nCoV与中国正在爆发的人类呼吸道疾病有关
doi:10.1038/s41586-020-2008-3


在一项新的研究中,来自中国复旦大学、中国疾病预防控制中心、华中科技大学和武汉市疾病预防控制中心的研究人员研究了一名在这家海鲜市场工作的患者,该患者于2019年12月26日入住武汉市中心医院,出现了严重的呼吸综合征,包括发烧、头晕和咳嗽。相关研究 结果于2020年2月3日在线发表在Nature期刊上,论文标题为“A new coronavirus associated with human respiratory disease in China”。重要的是,Nature期刊在2020年1月7年收到这篇论文的手稿,1月28日就接受了这篇论文,并以“加快评审文章(Accelerated Article Preview)”的形式在线发表了这篇论文。论文通讯作者为复旦大学公共卫生学院张永振(Yong-Zhen Zhang)教授。

这名接受研究的患者是一名41岁的男性,无肝炎、结核病和糖尿病病史。他在病发六天后即2019年12月26日入住武汉市中心医院。这名患者在就诊一周后就出现发烧、胸闷,无力咳嗽、疼痛和虚弱。心血管、腹部和神经系统检查均正常。观察到轻度的淋巴细胞减少(每 立方毫米少于900个细胞),但在全血细胞计数(CBC)测试中,白细胞和血小板计数正常。在血液化学测试中,观察到C反应蛋白(CRP,血液41.4 mg/L,参考范围0~6 mg/L)升高,并且天冬氨酸转氨酶、乳酸脱氢酶和肌酸激酶的水平略有升高。动脉血气(ABG)测试显 示这名患者患有轻度低氧血症,血氧水平为67mmHg。在入院的第一天(发病后第6天),胸部X线照片异常,伴有气腔阴影,如磨玻璃样阴影(ground glass opacity),双肺局灶性实变和斑片状实变。CT扫描显示双侧局灶性实变、大叶性实变和斑片状实变,尤其是下肺 。胸部X线照片显示入院后第5天(发病后第11天)双侧弥漫性斑块状的模糊阴影。

为了研究与这种疾病相关的可能病原体,这些研究人员收集了支气管肺泡灌洗液(BALF)并进行了深度宏转录组测序。这名患者的临床样本在上海公共卫生临床中心的生物安全3级实验室中进行处理。从200μl BALF样本中提取总RNA,并使用Illumina MiniSeq进行双端( 150 bp)测序,从而构建出宏转录组文库。他们总共产生了56565928个读取序列(sequence read),从头开始组装这些读取序列并筛选潜在的病原体。在利用Megahit组装出的384096个片段重叠群(contig)中,最长的片段重叠群(30474个核苷酸[nt])具有很高的丰度 ,并且与之前在中国采样获得的蝙蝠SARS样冠状病毒分离株bat-SL-CoVZC45(GenBank登录号MG772933)具有密切的亲缘关系,核苷酸序列同一性为89.1%。这种新型病毒的基因组序列及其末端分别通过RT-PCR9和5'/3' RACE Kit(TaKaRa)加以确定和确认。它被命名为 WH-Human 1冠状病毒(WHCV,也被称为2019-nCoV)。它的全基因组序列(29903 nt)的GenBank登录号为MN908947。将这些RNA测序(RNA-seq)数据与这种组装出的WHCV完整基因组进行重新映射导致123613个读取片段发生组装,并且在平均深度为6.04X(范围:0.01X- 78.84X)的条件下可实现99.99%的基因组覆盖率。

为了更好地了解WHCV感染人类的潜力,将它的刺突蛋白(S)的受体结合结构域(RBD)与SARS-CoV和蝙蝠SARS样冠状病毒中的RBD进行了比较。WHCV的RBD序列与SARS-CoV的RBD序列(氨基酸一致性为73.8%~74.9%)和包括毒株RB4874、Rs7327和Rs4231在内的能够利用人 ACE2受体进入细胞的SARS样冠状病毒(氨基酸一致性为75.9%~76.9%)存在更为密切的亲缘关系。此外,WHCV RBD仅比SARS-CoV RBD长一个氨基酸。相反,与SARS-CoV相比,包括毒株Rp3在内的不能使用人ACE211的其他蝙蝠SARS样冠状病毒在473-477和460-472位点发生 氨基酸缺失。先前确定的与人ACE2(PDB 2AJF)结合在一起的SARS-CoV RBD的晶体结构显示,区域473-477和460-472与人ACE2直接相互作用,因此可能在确定物种特异性中起着重要的作用。

在这篇论文中,这些研究人员从中国武汉市一名患有严重呼吸系统疾病的患者的BALF样本中描述了一种新型冠状病毒:WHCV(2019-nCoV)。系统进化树分析表明WHCV是β冠状病毒属(Sarbecovirus亚属)中的一种新型病毒,因此与SARS-CoV1表现出一些基因组和系统进 化相似性,尤其是在RBD中。2019-nCoV与SARS-CoV之间存在的基因组和临床相似性,以及它在临床样本中的大量存在,为WHCV与武汉市正在发生的呼吸道疾病疫情之间存在关联性提供了证据。尽管仅从一名患者中分离出这种病毒不足以得出导致呼吸道症状的结论,但是这些发现已在其他患者中得到独立证实。

8.Nature重磅:管轶等发现穿山甲是SARS-CoV-2的中间宿主
doi:10.1038/s41586-020-2169-0


世界范围内正在爆发的SARS-CoV-2引起的肺炎COVID-19正在给全球人民带来巨大的灾难,了解其来源对于开发治疗和防止以后的再次流行具有重要意义。尽管蝙蝠很可能是SARS-CoV-2的宿主,但是我们仍然不知道可能促进其转移到人类身上的中间宿主。3月26日,香港大学/汕头大学联合病毒研究所著名病毒学家管轶教授领衔的团队在Nature杂志上发文,报道了他们在马来亚穿山甲中发现与SARS-CoV-2相关的冠状病毒,他们在来自马来亚穿山甲的样品中发现了SARS-CoV-2相关冠状病毒的两个亚种,包括一个在受体结合域与SARS-CoV-2表现出很强的相似性(97.4%),这些结果表明穿山甲可能是新型冠状病毒转染给人的中间宿主。该研究题为“Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins”。

 

 

Nature (2020). https://doi.org/10.1038/s41586-020-2169-0。


研究人员先对2017年8月至2018年1月来自广西的18只马来亚穿山甲的冷冻血液样本以及肺、肠样本进行了分析。通过RNA高通量测序,研究人员发现43个样本中有6个样本(两个肺,两个肠,一个肺肠混合,五只穿山甲的血液)存在冠状病毒。

通过序列数据并用扩增子测序填充间隙后,研究人员进行了系统发育分析,最终得到了六个属于SARS-CoV-2谱系的完整的或接近完整的基因组序列--GX/P1E、GX/P2V、GX/P3B、GX/P4L、GX/P5E和GX/P5L。病毒分离出的序列(GX/P2V)的基因组序列与原样本的宏基因组测序得到的5个序列具有很高的相似性(99.83-99.92%),均具有与SARS-CoV-2相似的基因组框架,共有11个预测开放阅读框。

接下来研究人员对2018年5月至7月对收集到的另一批穿山甲标本进行了qPCR检测,来自12个动物的19个样品中,有3个样品出现了冠状病毒。

Science


 

基于此次疫情给中国和全世界带来严重的危害,小编针对Science期刊上发表的2019-nCoV/COVID-19研究进行一番梳理,以飨读者。

1.全文编译!我国科学家发表Science论文,揭示SARS-CoV-2病毒RNA依赖性RNA聚合酶的三维结构,助力开发新的疫苗和药物
doi:10.1126/science.abb7498


由新型冠状病毒SARS-CoV-2(之前称为2019-nCoV)引起的2019年冠状病毒病(COVID-19)于2019年12月出现,此后成为全球大流行病。据报道,SARS-CoV-2是β冠状病毒(betacoronavirus)属的一个新成员,与严重急性呼吸综合征(SARS)冠状病毒(SARS-CoV)和几种蝙蝠冠状病毒密切相关。与SARS-CoV和中东呼吸综合征(MERS)冠状病毒(MERS-CoV)相比,SARS-CoV-2表现出更快的人际传播,从而导致世界卫生组织(WHO)宣布为世界性的公共卫生紧急事件。

冠状病毒使用一种多亚基复制/转录复合物。作为病毒多聚蛋白(polyprotein)ORF1a和ORF1ab的裂解产物而产生的一组非结构蛋白(nsp)组装在一起以促进病毒复制和转录。其中的一个关键组分---RNA依赖性RNA聚合酶(RdRp, 也称为nsp12)---催化病毒RNA合成,因而在SARS-CoV-2的复制和转录周期中起着至关重要的作用,它在这个过程中可能需要作为辅因子的nsp7和nsp8的协助。因此,nsp12被认为是瑞德西韦(remdesivir, 也称为GS-5734)等核苷酸类似物抗病毒抑制剂的主要靶点,其中瑞德西韦已显示出治疗SARS-CoV-2感染的潜力。

为了指导药物设计,在一项新的研究中,来自中国清华大学、上海科技大学、南开大学、天津大学和中国科学院生物物理研究所的研究人员使用了两种不同的方案:一种不存在DTT(数据集1),另一种存在DTT(数据集2),并利用低温电镜(cryo-EM)技术解析出nsp12与它的辅因子nsp7和nsp8形成复合物时的三维结构。相关研究结果于2020年4月10日在线发表在Science期刊上,论文标题为“Structure of the RNA-dependent RNA polymerase from COVID-19 virus”。

 

 

图1.SARS-CoV-2病毒nsp12-nsp7-nsp8复合物的三维结构。图片来自Science, 2020, doi:10.1126/science.abb7498。


细菌表达的全长SARS-CoV-2 nsp12(残基S1-Q932)与nsp7(残基S1-Q83)和nsp8(残基A1-Q198)孵育在一起,然后纯化出所形成的复合物。在这种复合物的存在下制备出低温电镜网格,初步筛选后发现这种网格具有良好的分散性和极佳的颗粒密度。在收集和处理7994个显微影片后,这些研究人员在2.9埃的分辨率下实现对nsp12单体分别与nsp12-nsp8二聚体和 nsp8单体形成的复合物的三维重建,正如之前在SARS-CoV中观察到的那样。除了nsp12-nsp7-nsp8复合物,他们还观察到了对应于nsp12-nsp8二聚体以及单个nsp12单体的单颗粒类型,但这些都没有给出原子分辨率下的三维重建。然而,nsp12-nsp7-nsp8复合物的三维重建提供了完整的结构分析信息。

2.全文编译!荷兰科学家发表Science论文,在非人类灵长类动物模型中比较COVID-19、MERS和SARS的发病机制
doi:10.1126/science.abb7314


两份关于三名COVID-19患者肺组织学检查的报告显示双侧弥漫性肺泡损伤(DAD)、肺水肿和透明膜形成,这表明存在急性呼吸窘迫综合征(ARDS)以及肺泡腔内特征性的多核巨细胞,这类似于2002/2003年SARS-CoV疫情爆发期间的调查结果。先前曾在非人类灵长类动物模型(食蟹猴)中研究过SARS-CoV感染的发病机理,在这种动物模型中,年老动物更容易患病。

在一项新的研究中,来自荷兰多家研究机构的研究人员在食蟹猴中描述了SARS-CoV-2感染的特征,并与MERS-CoV感染和SARS-CoV的历史数据进行了比较。相关研究结果于2020年4月17日在线发表在Science期刊上,论文标题为“Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model”。

他们发现食蟹猴对SARS-CoV-2感染较为敏感,存在长时间脱落病毒,并表现出类似COVID-19的疾病。在这种非人类灵长类动物模型中,SARS-CoV-2在整个呼吸道组织(包括鼻腔、支气管、细支气管和肺泡)的呼吸道上皮细胞中有效地复制。上呼吸道中的病毒复制与宿主之间的有效传播相吻合,而下呼吸道中的病毒复制与肺部疾病的产生相吻合。对这种模型中SARS-CoV、MERS-CoV和SARS-CoV-2感染的深入比较,可能会发现这些新兴病毒的发病机制中的关键途径。这项新研究提供了一种新的感染模型,该模型对于评估和批准用于人类SARS-CoV-2感染的预防和治疗策略以及评估重新利用物种特异性现有疗法(比如聚乙二醇化干扰素)的疗效至关重要。

3.全文编译!Science期刊发文揭示重症COVID-19中的细胞因子释放综合征,并探讨潜在的治疗方法
doi:10.1126/science.abb8925


2019年12月,一种新型冠状病毒---SARS-CoV-2---横空出世。除了严重急性呼吸综合征(SARS)冠状病毒(SARS-CoV)和中东呼吸综合征(MERS)冠状病毒(MERS-CoV)之外,SARS-CoV-2是第三种引起人类严重呼吸道疾病---称为2019年冠状病毒病(COVID-19)---的冠状病毒。2020年3月,它被世界卫生组织(WHO)确认为大流行,对全球经济和健康产生了相当大的影响。尽管形势发展迅速,但在COVID-19病例中,有高达20%的COVID-19病例出现了以发热和肺炎为主要表现的严重疾病,从而导致急性呼吸窘迫综合征(ARDS)。这让人联想到在感染SARS-CoV和MERS-CoV的患者以及接受经过基因改造的T细胞治疗的白血病患者中观察到的细胞因子释放综合征(CRS)诱发的ARDS和继发性嗜血细胞增多症(sHLH)。鉴于这一经验,急需的基于抑制CRS的治疗药物(比如托珠单抗),已进入临床试验,用于治疗COVID-19。

 

 

图片来自Science, 2020, doi:10.1126/science.abb8925。


SARS-CoV-2是一种与SARS-CoV关系最密切的β冠状病毒(betacoronavirus)。这两种病毒都是利用血管紧张素转换酶相关羧肽酶(ACE2)受体进入细胞。这种受体在心肺组织中广泛表达,但是在包括单核细胞和巨噬细胞在内的一些造血细胞中也有表达。SARS-CoV-2感染的一个重要特征是淋巴细胞减少(较低的血液淋巴细胞计数),这与临床严重程度有关。SARS-CoV能有效地感染原代人单核细胞和树突细胞,而MERS-CoV通过二肽基肽酶4(DPP4)感染单核细胞和T细胞。SARS-CoV-2也有可能感染树突细胞。由于树突细胞功能障碍,T细胞活化缺陷导致的T细胞凋亡和衰竭可能是COVID-19的免疫病理学的原因。然而,淋巴细胞减少作为COVID-19预后不良的生物标志物并不具有特异性,这是因为在2009年甲型H1N1流感大流行中,它也是与死亡相关的生物标志物

鉴于全球缓解COVID-19大流行的紧迫性,有一些注意事项需要考虑。在败血症相关的ARDS中,通常会使用皮质类固醇激素。然而,在SARS和MERS患者中使用皮质类固醇并没有改善死亡率,并导致病毒清除延迟。因此,目前传染病权威机构和世界卫生组织的专家共识是避免对COVID-19患者进行全身性皮质类固醇治疗。一个理论上的可能性是利用IL-6拮抗抑制炎症可能会延缓病毒清除。然而,IL-6阻断也会导致血清IL-10(一种由巨噬细胞分泌的免疫抑制性细胞因子)的快速降低,这可能会减轻对延长病毒清除时间的担忧。此外,一到两剂IL-6拮抗剂不太可能导致并发症,如真菌感染或下颌骨坏死等,这些并发症在每月服用这类药物治疗类风湿性关节炎等慢性疾病的患者中发生。值得注意的是,托珠单抗首先被批准用于治疗风湿性疾病,随后又被批准用于治疗接受CAR-T细胞治疗的患者中出现的CRS,现在又被进一步转用于遏制COVID-19大流行。在未来涉及流感病毒和埃博拉病毒等其他病毒的大流行中也有可能使用IL-6靶向疗法。

4.Science重大突破:我国科学家设计新药靶向SARS-CoV-2主蛋白酶!
doi:10.1126/science.abb4489


一个中国科学家团队最近开发了两种抑制SARS-CoV-2主要蛋白酶(Mpro)的新化合物,其中一种是进一步临床研究的良好候选药物。这项研究于4月22日在线发表在Science上,由中科院上海药物研究所柳红、许叶春、蒋华良院士团队、中科院武汉病毒研究所张磊砢/肖庚富团队和上海科技大学杨海涛/饶子和团队合作完成。

在分析了SARS-CoV-2 Mpro的底物结合位点后,科学家们设计并合成了两种化合物,11a和11b。研究人员随后使用基于荧光共振能量转移(FRET)的剪切实验测定了两种药物的IC50值。结果显示11a和11b都具有优异的SARS-CoV-2 Mpro抑制活性,其IC50值分别为0.053±0.005μM和0.040±0.002μM。

研究人员还使用了免疫荧光、实时荧光定量PCR和噬菌斑检测来监测11a和11b的抗病毒活性。结果表明,化合物11和11 b在细胞实验中表现出优异的抗SARS-CoV-2感染的能活性(例如噬菌斑实验检测出的EC50值分别为0.53±0.01μMμM和0.72±0.09,)。此外,这些化合物在体内表现出良好的药代动力学性能,表明它们是有希望的候选药物。然而,化合物11a的低毒性使它特别有希望。

为了阐明化合物11a和11b抑制SARS-CoV-2 Mpro的机制,科学家们以1.5埃的分辨率测定了配合物Mpro-11a (PDB:6LZE)和Mpro-11b (PDB:6M0K)的高分辨率晶体结构。这些配合物的高分辨率晶体结构不仅说明了SARS-CoV-2 Mpro可以与11a/11b相互作用,而且揭示了SARS-CoV-2的抑制机制。高分辨率的复合物分析有助于药物化学家设计新的抑制剂来对抗SARS-CoV-2。

本研究表明,基于结构的药物设计是设计针对SARS-CoV-2的特异性抗病毒先导药物的有效策略。化合物11a的临床前研究正在进行中。该团队决定与世界各地的科学家分享研究数据,以加速抗SARS-CoV-2药物的开发。

5.Science:COVID-19或呈季节性复发,夏季高温也不会使之消亡!
doi:10.1126/science.abb5793


哈佛大学(Harvard)的研究人员对普通感冒进行了研究,以寻找有关COVID-19病毒可能如何表现的线索。这些研究结果由哈佛大学陈曾熙公共卫生学院(Harvard T.H. Chan School of Public Health)流行病学、免疫学和传染病学系的科学家撰写,并于近日发表在Science杂志上。由博士后Stephen Kissler和博士生Christine Tedijanto领导的研究人员使用了SARS-CoV-2的近亲来模拟它在未来几个月的行为。SARS-CoV-2是导致COVID-19的病毒。

HCoV-OC43和HCoV-HKU1病毒有规律地传播并引起普通感冒。研究人员利用它们建立了一个模型,该模型考察了潜在的季节性、社交疏远策略的影响以及病毒在未来致病中的作用。研究人员说,这些设想并没有考虑如果开发出疫苗或治疗方法会对结果产生怎样的影响--因为这两种方法似乎都不会马上出现。

在每一个模拟的场景中,他们发现温暖的天气并没有阻止传播。这是因为,以普通感冒为例,大部分人通常会在春天生病并产生免疫力。然而,有了SARS-CoV-2,足够多的人可能仍然易受感染,即使在温暖的月份里传播减少了,它也能传播。

关于这种新型冠状病毒的另一个未知因素是感染后免疫力能够维持的时间。像感冒这样的短期免疫力持续不到一年,在最初的大流行高峰过后,将导致每年的COVID-19暴发。另一方面,永久免疫将在病毒最初爆发后的5年或更长的时间内消除病毒的传播。

研究人员还研究了单次和多次社交疏远对保持病人人数的影响,以使医疗系统能够应对。Kissler说,最有效的干预措施是一系列的社交疏远期,再加上监测疾病复发的有效检测,以便在病例淹没整个系统之前重新制定措施。研究人员说,这样的情况不仅导致了最少的死亡,而且还使人群逐渐获得了对病毒的免疫力。

6.Science:新研究解释了中国采取的社会隔离等措施导致COVID-19病例数量在指数增长后快速下降
doi:10.1126/science.abb4557


在中国,经检测为COVID-19阳性的病例数最初呈指数增长,但随后下降。在一项新的研究中,德国罗伯特-科赫研究所项目组负责人、德国柏林洪堡大学教授Dirk Brockmann博士和他的博士后研究员Benjamin F. Maier开发出一种考虑了社会隔离(social distancing)和其他措施的影响的扩散模型,并利用这种扩散模型对这种影响加以解释。相关研究结果于2020年4月8日在线发表在Science期刊上,论文标题为“Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China”。

 

 

图片来自CC0 Public Domain。


Brockmann解释说,“当传染病不受阻碍地传播时,病例数量将呈指数增长。比如,一个感染者感染了三个人,这三个人中的每个人接着又感染了三个人,这样在很短的时间内,很多人都会生病。”但是,根据Brockmann的说法,这种增长后来在中国就看不到了。“自从今年一月底以来,病例数量较慢地稳步增长,然后趋于平稳。”

这两名研究人员认为造成这种现象的原因是社会隔离或政府采取的接触者追踪和宵禁等措施导致了个人行为的改变。随着时间的流逝,这些措施导致感染者和非感染者之间的接触越来越少,这导致所谓的再生数(reproduction rate)随时间下降。Maier解释说,“如果一个人平均感染三个以上的人,但之后每个人只感染两个人,然后每个人只感染一个人,那么疫情的增长速度就会比指数增长慢得多,我们称之为次指数增长(sub-exponential)。”

7.Science:我国科学家发现猫更易感染SARS-CoV-2,狗不易感染
doi:10.1126/science.abb7015


我国科学家发现,猫可能感染引起COVID-19的冠状病毒,并可能传播给其他猫,但狗并不真的容易感染。哈尔滨兽医研究所的研究小组还得出结论,鸡、猪和鸭子不太可能感染病毒。

其他科学家说,这些发现很有趣,但养猫的人现在还不应该感到恐慌。位于伍斯特的俄亥俄州立大学的病毒学家Linda Saif说,研究结果是基于实验室实验得出的,在实验中,一小部分动物被故意注射了高剂量的SARS-CoV-2病毒,但这并不代表人类和宠物之间的真实传播。她说,没有直接证据表明受感染的猫会分泌足够的冠状病毒传染给人类。

随着冠状病毒在全球迅速蔓延,一些人开始担心它是否能在宠物和人之间传播。到目前为止,已经有一些宠物被感染的报道:比利时有一只猫,香港有两只狗。"猫和狗与人类有密切的接触,因此了解它们对SARS-CoV-2的敏感性对COVID-19的控制是很重要的,"最新研究的作者写道。该研究于4月8日发布在Science上。

由病毒学家Bu Zhigao领导的研究小组将SARS-CoV-2病毒样本注入了5只家猫的鼻子中。当其中两只动物在6天后被安乐死时,研究人员在它们的上呼吸道发现了病毒RNA和传染性病毒颗粒。

另外三只受感染的猫被放在笼子里,旁边是未受感染的猫。研究小组后来在其中一只受感染的猫身上检测到病毒RNA,这表明它是从受感染的猫呼出的飞沫中感染病毒的。所有四只受感染的猫都产生了抗SARS-CoV-2的抗体。作者在论文中指出,对猫体内SARS-CoV-2的监测应被视为消除人类COVID-19的努力的一部分。

8.Science重磅!SARS-CoV-2的致命弱点或是其与SARS抗体的结合位点!
doi:10.1126/science.abb7269


Scripps研究所的科学家进行的一项研究显示,21世纪初从一名非典(SARS)幸存者身上发现的一种抗体揭示了最近这种导致COVID-19的新型冠状病毒的潜在弱点。

4月3日发表在Science杂志上的这项研究,首次以接近原子尺度的分辨率描绘了人类抗体与新型冠状病毒的相互作用。这种抗体是在SARS(严重急性呼吸系统综合症)感染时产生的,尽管SARS是由SARS-CoV病毒引起的,但它可以与新型冠状病毒SARS-CoV-2发生交叉反应。该结构图谱揭示了抗体结合两个冠状病毒上几乎相同的位点,这表明该位点是冠状病毒家族重要的功能和易损位点。

"像这种位点保守的知识可以帮助对SARS-CoV-2疫苗和疗法基于结构的设计,而这些疗法也将防止其他可能出现在未来的冠状病毒,"这项研究的资深作者Ian Wilson说道,他是Scripps研究所计算生物学和综合结构系主任以及结构生物学的Hansen教授。

9.Science:利用追踪近距离接触者的移动应用程序控制冠状病毒传播
doi:10.1126/science.abb6936


在一项新的研究中,来自英国牛津大学的研究人员在Science期刊上发布的研究结果进一步加深了我们对冠状病毒SARS-CoV-2传播的了解。这一证据使得包括英国NHSX机构和挪威公共卫生研究所在内的多个国际合作伙伴能够评估在创纪录的时间内开发即时追踪接触者的移动应用程序的可行性。如果这些移动应用程序得到迅速和广泛的开发,那么它们可能有助于显著降低传播速率,并在限制逐渐放松的情况下,帮助各国安全地走出封锁。相关结果于2020年3月31日在线发表在Science期刊上,论文标题为“Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing”。

 

 

图片来自Science, 2020, doi:10.1126/science.abb6936。


论文通讯作者、牛津大学大数据研究所纳菲尔德医学系的Christophe Fraser教授说,“我们需要一种移动接触者追踪应用程序来紧急支持卫生服务,以控制冠状病毒传播、制定针对性的干预措施和并确保人们的安全。我们的分析表明,大约有一半的传播发生在感染的早期,也就是感染者未显示任何感染症状之前。我们的数学模型还强调,传统的公共卫生接触者追踪方法提供的数据不完整,无法跟上这次疫情的传播步伐。”

论文共同作者、牛津大学纳菲尔德医学系高级研究员、牛津大学约翰-拉德克利夫医院临床医生David Bonsall博士解释道,“我们在数学上建模的这种移动应用程序概念很简单,不需要追踪你所在的位置;它使用低能耗版本的蓝牙来记录所有应用程序用户最近几天有过近距离接触的人。如果你随后被感染,则这些与你接触的人会被立即匿名提醒,并且建议他们回家进行自我隔离。如果应用程序用户决定共享其他数据,那么他们可以支持卫生服务来确定疫情趋势,并针对最需要的人群采取针对性的干预措施。”

这些作者认为移动应用程序可以在疫情的任何阶段减少传播,即在疫情刚刚出现的国家或地区、在疫情高峰期,或支持安全解除移动限制或封锁。它还可能有助于减少因广泛封锁而造成的严重社会、心理和经济影响。至关重要的是,这些研究人员认为,在疫苗和抗病毒药物得到广泛应用之前,移动应用程序可以帮助减缓感染的传播。

10.Science重磅!中国控制措施阻止了至少70万COVID-19病例的发生!
doi:10.1126/science.abb6105


据一个国际研究小组说,中国在COVID-19爆发的前50天采取的控制措施可能将病毒传播到武汉以外的城市的时间推迟了几天,并阻断了全国范围内的传播,使全国避免了70多万例感染。3月31日发表在Science杂志上的研究结果可能对仍处于COVID-19暴发早期阶段的国家有用。

牛津大学马丁学院访问学者、动物学教授Christopher Dye说:"截止到2月19日,中国确诊的COVID-19病例约为3万例。我们的分析表明,如果没有武汉旅行禁令和全国应急响应,到那一天,在武汉以外地区将有超过70万例确诊的COVID-19病例。中国的控制措施已经成功地打破了传染病和易感人群之间的传播预防接触链。"

宾夕法尼亚州立大学昆虫学和生物学特聘教授Ottar Bjornstad说:"我们工作中一个有趣的方面是,它展示了手机移动数据等新型数据流的力量。由于我们研究的时间段包括春节假期和中国农历新年,所以我们能够将疫情期间进出武汉的交通模式与之前两个春节的手机数据进行比较。分析显示,在2020年1月23日的旅行禁令实施后,移动人口出现了惊人的减少。根据这些数据,我们还可以计算出中国其他城市与武汉相关的病例可能减少的情况。"

11.Science:在COVID-19疫情早期和后期采取旅行限制是最有用的
doi:10.1126/science.abb4218


新型冠状病毒SARS-CoV-2(之前称为2019-nCoV)导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。在一项新的研究中,来自美国东北大学、哈佛大学、波士顿儿童医院、华盛顿大学、英国牛津大学、南安普敦大学、法国巴斯德研究所、索邦大学、中国北京师范大学和厄瓜多尔基多圣弗朗西斯科大学的研究人员对人类流动性和流行病学数据进行了分析,发现人类流动性可预测COVID-19疫情在中国的传播。不幸的是,对武汉的出行限制来得晚了些,而且研究显示随着COVID-19疫情蔓延,出行限制的影响在下降。湖北省以外的中国省份较早地采取行动来测试、追踪和遏制输入的COVID-19病例,在预防或遏制当地疫情方面发挥了最佳作用。相关研究结果于2020年3月25日在线发表在Science期刊上,论文标题为“The effect of human mobility and control measures on the COVID-19 epidemic in China”。

来自百度公司的移动地理位置数据,结合来自Open COVID-19数据工作组(Open COVID-19 Data Working Group)的丰富流行病学数据集,显示当地的人际传播在这种冠状病毒疫情爆发的早期就广泛发生,并且通过严格的控制措施得以缓解。但是,平均潜伏期为5天,在某些情况下长达14天,这些流动性限制在一周多的时间内并未开始对新病例的数据产生积极影响---在封锁后的5~7天内,情况似乎变得更糟,这是因为当地的传播正在进行中。

在湖北省以外地区报告的病例中,有515例已知到过武汉旅行,且症状发作日期是2020年1月31日之前,而1月31日之后只有39例到过武汉旅行,这说明旅行限制对减少向中国其他省份的传播具有影响。

论文共同通讯作者、牛津大学动物学系的Moritz Kraemer博士说,“我们的发现表明,在这种冠状病毒疫情暴发的早期采取旅行限制有效地阻止了从已知来源输入的感染。但是,一旦COVID-19病例开始在当地传播,新输入病例的贡献就小得多。这就需要采取包括地方流动限制、检测、跟踪和隔离在内的一整套措施来减轻疫情。成功阻止了COVID-19内部传播的中国各省和其他国家需要仔细考虑如何管理恢复旅行和流动,以避免这种疾病在人群中重新出现和传播。”

12.Science:我国科学家解析出SARS-CoV-2主蛋白酶的三维结构
doi: 10.1126/science.abb3405


全世界的科学家们正在努力了解导致2019年冠状病毒病(COVID-19)的新型冠状病毒,即SARS-CoV-2。Zhang等人解析出这种病毒生命周期中的一种关键蛋白---主蛋白酶(main protease)---的X射线晶体结构。这种酶可以切割从病毒RNA中翻译出来的多聚蛋白(polyprotein),从而产生功能性的病毒蛋白。此外,这些作者还将一种先导化合物开发成一种强效抑制剂,并获得了这种主蛋白酶与这种抑制剂结合在一起时的结构。这项研究可能为开发抗冠状病毒药物提供了基础。

13.中美科学家Science:无症状患者的传播是导致SARS-CoV-2扩散的主要原因
doi:10.1126/science.abb3221


研究人员在3月16日出版的《Science》杂志上总结称,在中国实施旅行限制之前的1月份,约86%的COVID-19病例病情较轻,但在持续两周的疫情加剧期间未被发现。

高级研究员Jeffrey Shaman说,这些未被记录在案的感染病例"每个人的传染性大约只有有记录病例的一半,而后者的症状更严重,而且可能还有很多未被发现。"他是哥伦比亚大学梅尔曼公共卫生学院的环境健康科学教授。

然而,Shaman说:"因为有更多的这些没有文件证明的病例,正是这些没有文件证明的感染推动了疫情的蔓延和扩大。"

因此,研究人员说,继续和扩大对各国封锁是正确的行动,以尽可能地限制COVID-19的流行。

14.Science:探究旅行限制对COVID-19疫情传播的影响
doi:10.1126/science.aba9757


为了应对新型冠状病毒SARS-CoV-2在全球范围内的扩散,世界各地都在实施检疫措施。为了了解旅行和检疫如何影响这种新型人类病毒的传播动态,Chinazzi等人将全球集合种群疾病传播模型应用于中国的流行病学数据。他们的结论是,2020年1月23日在武汉实施的旅行检疫只将中国境内的疫情进展推迟了3至5天,但国际旅行限制确实有助于在2月中旬之前减缓在世界其他地方的传播。他们的研究结果表明,早期发现、洗手、自我隔离和家庭隔离很可能比旅行限制更有效地缓解这一疫情。

15.Science:我国科学家从结构上揭示SARS-CoV-2识别全长人ACE2的机制
doi:10.1126/science.abb2762


新型冠状病毒SARS-CoV-2是导致大流行性疾病COVID-19的起因。科学家们正在竞相了解SARS-CoV-2的秘密。这种病毒进入的第一步是SARS-CoV-2三聚体刺突蛋白与人受体血管紧张素转化酶2(ACE2)的结合。我国科学家解析出人ACE2与其伴侣蛋白B0AT1形成复合物时的三维结构。在这种复合物中,ACE2以二聚体形式呈现。进一步的结构分析显示了SARS-CoV-2的受体结合结构域如何与ACE2相互作用,并提示着两个三聚体刺突蛋白可能与ACE2二聚体结合。这些结构为开发靶向这种关键性相互作用的治疗药物提供了基础。

16.Science:深度解析为何新型冠状病毒更易于在人间传播扩散 病毒S蛋白与宿主细胞受体ACE2的亲和力竟是SARS的10-20倍!
doi:10.1126/science.abb2507


最近在中国爆发的新型冠状病毒(2019-nCoV)感染疫情如今已经被列为国际关注的突发公共卫生事件,这种病毒会引起发烧、严重呼吸道疾病和肺炎症状;冠状病毒的S糖蛋白(spike glycoprotein)是开发新型疫苗、治疗性抗体和诊断技术的关键靶点。2月19日,刊登 在Science杂志上一篇题为“Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation”的研究论文中,来自美国德克萨斯大学和国家过敏和传染病研究所的研究人员通过联合研究利用冷冻电镜技术解析了新型冠状病毒S蛋白的结构,深入研究后, 研究者发现,新冠病毒S蛋白与宿主细胞ACE2之间的亲和力是SARS的10-20倍,相关研究结果或为后期疫 苗和新型抗病毒药物的提供新的思路和研究基础。

 

 

新型冠状病毒S蛋白在融合前构象中的结构,图片来源:Daniel Wrapp,et al。


据WHO 2月10日数据显示,目前全球有超过4万例确诊病例,已经造成了至少900人死亡,这种冠状病毒被认为是一种新型冠状病毒(2019-nCoV),其与多种蝙蝠冠状病毒及SARS冠状病毒具有高度相似性;相比SARS冠状病毒而言,新型冠状病毒似乎更容易人传人,其能在 几个大洲快速传播,并让WHO宣布全球进入公共卫生应急状态。新型冠状病毒能利用一种紧密糖基化的、同源三聚体I类融合凸起蛋白(S蛋白)来进入宿主细胞中,S蛋白能以一种相对稳定的融合前构象存在,并经历剧烈的结构重排来促进病毒膜结构与宿主细胞膜进行融 合,这一过程是由病毒S1亚单位与宿主受体的结合所诱发,其能破坏融合前三聚体的稳定性,从而导致S1亚单位脱落,并促使S2亚单位转变为高度稳定的融合后构象。为了能与宿主受体相结合,S1的受体结合结构域会经历链状样的构象运动,这种运动方式会暂时隐藏或 暴露受体结合的决定因素,这两种状态被认为是“向上”或“向下”构象,其中向下的构象对应的是受体不可及的状态,而向上构象则对应着受体可达的状态,后者被认为具有不稳定。由于S蛋白不可或缺的功能,因此其有望成为抗体所介导的中和作用的易感性靶点,而 融合前的S结构则能够提供原子水平的信息来帮助指导科学家们进行疫苗的设计和开发。 

 

Cell

 

基于此次疫情给中国和全世界带来严重的危害,小编针对Cell期刊上发表的2019-nCoV/COVID-19研究进行一番梳理,以飨读者。

1.我国科学家发表Cell论文,开发出一种可准确地诊断新冠肺炎和评估预后的人工智能系统
doi:10.1016/j.cell.2020.04.045


最近,AI在许多医疗领域中的应用取得了令人振奋的新进展,这些新进展激发了基于AI的新型放射诊断技术的创新性开发。Chen等人回顾了胸部薄层CT的各种定量模型,显示了定量工具在精准诊断和纵向随访中的有效性。另一项研究显示,深度学习算法有助于识别头部CT扫描异常,可辅助临床分诊。近期的研究展示了将AI整合到眼科和儿童疾病诊断系统中的潜力,并发现这可以显著提高临床诊断效率和准确性。

随着CT扫描工具的更加精确,在一项新的研究中,来自中国澳门科技大学、四川大学华西医院、广州再生医学与健康广东省实验室、清华大学、中山大学、三峡大学、安徽医科大学、武汉大学、广州医科大学、云南省第一人民医院、香港理工大学和广州康睿智能科技公司(Guangzhou Kangrui AI Technology)的研究人员假设可以建立一种能够准确诊断NCP的AI系统,这将有助于放射科医生和临床医生对提示存在COVID-19 NCP症状的患者进行管理。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Clinically applicable AI System for Accurate Diagnosis, Quantitative Measurements and Prognosis of COVID-19 Pneumonia Using Computed Tomography”。

 

 

图1.这些作者提出的人工智能框架用于NCP诊断和预后预测,图片来自Cell, 2020, doi:10.1016/j.cell.2020.04.045。


这些作者描述了一种基于胸部CT图像诊断COVID-19肺炎的AI系统。这种AI系统的性能与具有丰富临床经验的执业放射科医生相当,可以帮助和提高初级放射科医生的表现。开展这种AI研究工作的驱动力是希望开发出一种快速诊断NCP的系统,以协助放射科医生和临床医生对抗这一流行病。这样的AI系统还可以在大流行时或在偏远地区的卫生系统超负荷工作时,缓解对诊断专家的大量需求。目前,这些作者开发出的这种AI系统作为一种高效的首诊/筛查工具,可以帮助放射科医生和临床医生,这是因为这可能会减少患者的等待时间,缩短诊断工作流程时间,从而减轻放射科医生的整体工作量,让他们在紧急情况下能更快速、更有效地做出反应。通过CT扫描对不同肺部损伤参数的精确测量,还将可以对疾病的严重程度进行客观、定量的测量,并有可能对包括抗病毒药物和其他免疫调节剂在内的药物治疗对肺部病灶的疗效进行客观、定量的评估。

2.Cell:好狡猾!揭示新型冠状病毒SARS-CoV-2进入人体呼吸组织机制
doi:10.1016/j.cell.2020.04.035


在一项新的研究中,在美国波士顿儿童医院的Jose Ordovas-Montanes博士和麻省理工学院的Alex K. Shalek博士的领导下,研究人员指出了这种病毒可能感染的细胞类型。出乎意料的是,他们还发现人体对病毒感染的主要防御措施之一可能实际上帮助这种病毒感染这些细胞。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues”。

近期的研究已发现SARS-CoV-2与密切相关的SARS-CoV一样,利用一种称为ACE2的受体进入人体细胞,这种进入还需要一种称为TMPRSS2的酶的辅助。这使得Ordovas-Montanes和Shalek及其同事们提出了一个简单的问题:呼吸道和肠道组织中的哪些细胞同时表达ACE2和TMPRSS2?

为了解决这个问题,这些研究人员使用了单细胞RNA测序,这种技术可以识别出大约20000个基因中的哪些基因在细胞中“开启”。他们发现人类呼吸道和肠道细胞中只有极小的比例,往往远低于10%,可表达ACE2和TMPRSS2。这些细胞分为三种类型:鼻腔中分泌粘液的杯状细胞(goblet cell);称为II型肺细胞的肺细胞,帮助维持肺泡(将氧气吸入的气囊);以及一种所谓的肠上皮细胞,它们位于小肠内壁,参与营养物吸收。对非人灵长类动物的取样发现了类似的易感细胞。

Ordovas-Montanes指出,“许多现有的呼吸道细胞系可能不包含完整的细胞类型组合,可能会遗漏相关的细胞类型。一旦你了解了哪些细胞被感染,你就可以开始询问,‘这些细胞发挥什么作用?’‘这些细胞内有什么东西对这种病毒的生命周期至关重要吗?’有了更精细的细胞模型,我们就可以进行更好的筛选,以便找到哪些现有的药物可以靶向这种生物学特性,从而为开展小鼠或非人灵长类动物研究提供了一个垫脚石。”

但最令这些研究人员感到好奇的是这项新研究的第二个发现。他们发现编码SARS-CoV-2用来进入人细胞的受体的ACE2基因是由干扰素---当检测病毒时,人体的主要防御措施之一---激活的。干扰素实际上在更高的水平上激活了ACE2基因,这可能给这种病毒提供了新的入口进入。

3.Cell:从结构上详细阐明单结构域骆驼抗体可强效中和包括SARS-CoV、MERS-CoV和SARS-CoV-2在内的β冠状病毒
doi:10.1016/j.cell.2020.04.031


冠状病毒表面有刺突糖蛋白(S),它是一种大型I类融合蛋白。S蛋白形成了一个三聚体复合物,在功能上可分为两个不同的由一个蛋白酶切割位点分隔开的亚基,即S1和S2。S1亚基包含受体结合结构域(RBD),它与宿主细胞受体蛋白相互作用,触发膜融合。S2亚基包含膜融合复合物,包括疏水性融合肽和α-螺旋七肽重复区。SARS-CoV和MERS-CoV的功能性宿主细胞受体分别是血管紧张素转换酶2(ACE2)和二肽基肽酶4(DPP4)。无论是在结构上还是在生物物理学上,这些受体与各自的RBD之间的相互作用已经被充分地表征了。最近,有报道称SARS-CoV-2 S蛋白也利用ACE2作为功能性宿主细胞受体,并且已经报道了这种复合物的几种结构。

在一项新的研究中,来自比利时、美国和德国多家研究机构的研究人员分离出两种分别可强效中和SARS-CoV RBD和MERS-CoV RBD的VHH。这两种VHH分别是对美洲驼进行SARS-CoV S蛋白和MERS-CoV S蛋白免疫而触发的。他们解析出这两种VHH与它们各自的病毒表位形成复合物时的晶体结构,这表明中和机制可能是受体结合界面受到封闭和将RBD保持在向上构象中。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Structural Basis for Potent Neutralization of Betacoronaviruses by Single-domain Camelid Antibodies”。

这些研究人员还发现这种靶向SARS-CoV RBD的VHH与SARS-CoV-2 RBD发生交叉反应,并且可以阻断受体结合界面。在将这种VHH进行基因改造后成为二价Fc融合蛋白后,他们证实这种交叉反应性的VHH也可以中和携带SARS-CoV-2 S蛋白的假病毒。他们进一步证实这种VHH-Fc融合蛋白可以在工业标准的CHO细胞系统中高产量产生,这表明作为正在进行的COVID-19大流行的潜在治疗试剂,它值得进一步研究。

由此可见,这些研究人员从接受融合前保持稳定的MERS-CoV和SARS-CoV S蛋白免疫的美洲驼中分离出两种具有强效中和能力的VHH,并对它们进行了表征。这两种VHH能够与各自S蛋白的RBD高亲和力地结合,能够在体外中和表达各自S蛋白的假病毒。就他们所知,人们之前还没有分离和表征SARS-CoV S蛋白特异性的VHH。几种MERS-CoV S蛋白特异性的VHH已经被描述,它们都是靶向RBD的。这几种VHH中的一些也已被报道可以阻断DPP4结合,非常类似于MERS VHH-55。通过解析出这两种新分离的VHH与各自的病毒靶点形成复合物时的晶体结构,他们提供了关于表位结合及其中和机制的详细见解。

4.Cell:详解对SARS-CoV-2感染的不平衡宿主反应导致新冠肺炎产生机制
doi:10.1016/j.cell.2020.04.026


为了更好地了解COVID-19的分子基础,在一项新的研究中,来自美国西奈山伊坎医学院等多家研究机构的研究人员在细胞系、原代细胞培养物、雪貂和COVID-19患者中重点研究了宿主对SARS-CoV-2和其他人类呼吸道病毒的反应。他们比较了宿主对SARS-CoV-2和其他呼吸道病毒感染的转录反应,以确定可能构成COVID-19生物学基础的转录特征。总的来说,他们的数据表明,与其他高致病性冠状病毒以及IAV、人副流感病毒3型(HPIV3)和呼吸道合胞病毒(RSV)等常见的呼吸道病毒相比,宿主对SARS-CoV-2感染的整体转录印迹是不同的,是异常的。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Imbalanced host response to SARS-CoV-2 drives development of COVID-19”。

 

 

图片来自Cell, 2020, doi:10.1016/j.cell.2020.04.026。


尽管存在病毒复制,但宿主对SARS-CoV-2的反应未能启动强劲的IFN-I/-III反应,同时诱导招募效应细胞所需的高水平趋化因子。鉴于免疫反应的减弱使得病毒复制得以持续,这些发现可能解释了为什么严重的COVID-19病例更经常在有合并症的个体中观察到。此外,值得注意的是,尽管对SARS-CoV-2的IFN-I/-III反应减少,但是他们观察到一致性的趋化因子特征。

这一观察的一个例外是A549-ACE2细胞和CALU-3细胞对高感染复数(multiplicity of infection, MOI)感染的反应:病毒复制在这些细胞中是强劲的,并且可以观察到IFN-I和IFN-III特征。

在这两个例子中,细胞被感染的速率理论上是每个细胞传递两个功能性病毒颗粒,除此之外,病毒库中存在的任何缺陷的干扰性病毒颗粒在病毒空斑测定方法中并不考虑在内。在这些条件下,病原体相关模式分子(PAMP)的阈值可以在病毒通过产生病毒拮抗剂来逃避检测的能力之前实现。或者,在单个细胞中加入多个基因组可能会破坏病毒成分的化学计量,这反过来就可能产生通常不会形成的PAMP。这些想法得到以下事实的支持:在对A549-ACE2细胞的低MOI感染中,高水平的病毒复制在没有IFN-I/-III诱导的情况下也可实现。综合起来,这些数据将表明,在低MOI感染下,病毒不能强劲地诱导IFN-I/-III系统,但在高MOI感染下,这一点是可以实现的。这些动态也可能在感染过程中促进COVID-19产生。

5.Cell:中英科学家揭示中国广东省SARS-CoV-2的基因组流行病学
doi:10.1016/j.cell.2020.04.023


了解病毒进入新人群后的演变和传播模式,对于设计有效的疾病控制和预防策略至关重要。在一项新的研究中,来自中国广东省公共卫生研究院、广东省疾病预防控制中心、深圳市疾病预防控制中心、广东省第二人民医院、佛山市第一人民医院、英国牛津大学、爱丁堡大学和伯明翰大学的研究人员结合遗传学和流行病学数据,研究了广东省SARS-CoV-2的遗传多样性、进化和流行病学。通过系统发育分析,结合现有的流行病学信息,他们试图研究输入性病例与本地传播的时间和相对贡献、广东省内遗传学上截然不同的传播链的性质,以及广东省的应急响应如何体现在减少和消除这些传播链上。他们的研究结果可能为其他地区实施和解读SARS-CoV-2基因组监测提供有价值的信息。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China”。论文通讯作者为广东省公共卫生研究院的柯昌文(Changwen Ke)和牛津大学的Oliver G Pybus。

这些研究人员对广东省SARS-CoV-2的基因组流行病学分析表明在1月初发现第一例COVID-19病例后,大部分感染是由其他地方的病毒输入造成的,而且本地传播链的规模和持续时间有限。这表明,在广东省实施的大规模监测和干预措施有效地阻断了人口密集的城市地区中的社区传播,从而最终控制了疫情和限制了向其他地区传播的可能性。然而,由于最近从其他国家输入到中国的COVID-19病例数量增加,SARS-CoV-2传播在广东仍有可能出现死灰复燃的风险,因此仍需对此提高警惕。

这些结果还表明,在大流行病早期阶段对系统发育结构的分析应细心解读。确定系统发育谱系的突变数量很少(通常是一个),这可能类似于逆转录、PCR扩增或测序过程中引入的错误引起的序列差异。分歧时间的贝叶斯估计值,比如COVID-19大流行的最近共同祖先时间(tMRCA),是基于突变的总体数量,并通过时间上的密集抽样来获得信息,因此预期更稳健。此外,COVID-19病例在不同地区之间的抽样率低且易变,这使得评估由来自单个地区的病例组成的系统发育簇(phylogenetic cluster)具有挑战性;尽管这样的系统发育簇确实可以代表局部传播,但是这项新研究的结果表明它们也可以包括来自基因组未被抽样的地点的多次输入。因此,与所有系统发育分析一样,SARS-CoV-2基因组必须在所有可用的流行病学信息的背景下进行解读。

6.Cell:新研究揭示在美国疫情早期,SARS-CoV-2在海岸间传播
doi:10.1016/j.cell.2020.04.021


在一项新的研究中,来自美国多家研究机构的研究人员提出假设,即在美国COVID-19病例数量的不断增加和存在大量国内旅行的情形下,美国新的疫情爆发更可能是州际传播而不是国际传播。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United States”。

由于靠近几个高旅客流量的机场,康涅狄格州南部是检验这一假设的合适地点。通过从当地病例进行SARS-CoV-2测序,并比较它们与其他地点的病毒基因组序列的相关性,这些研究人员使用“基因组流行病学(genomic epidemiology)”来确定康涅狄格州的SARS-CoV-2的可能来源。他们利用来自新英格兰南部主要机场的航空公司旅行数据补充了他们的病毒基因组分析,以估计这种病毒的国内和国际输入风险。他们的数据表明,不论是否采取联邦旅行限制,SARS-CoV-2在国内输入到这个地区的风险远远超过了国际输入的风险,并找到了美国海岸间SARS-CoV-2传播的证据。

他们的基因组流行病学和旅行模式分析的综合结果表明近期国内传播成为美国新增SARS-CoV-2感染的重要来源。他们发现强有力的证据表明东海岸(康涅狄格州)的疫情与西海岸(华盛顿州)的疫情有关联,这表明横贯美国大陆的病毒传播已经发生。截至3月25日,全球有>1000个已被测序的SARS-CoV-2基因组,其中有>350个来自美国(https://nextstrain.org/ncov);然而,后者大部分来自美国少数州。因此,他们无法确定病毒输入到康涅狄格州的确切病毒来源。最近的9个报告病例的国内旅行史是无法提供的,但不可能所有的感染都起源于华盛顿州。此外,由于这些来自康涅狄格州和华盛顿州的早期病毒序列之间的遗传多样性较低,他们还无法定量确定这种病毒可能在美国海岸之间传播的速度,也无法确定是否由来自共同来源的病毒输入导致系统发育分组。在美国可能存在其他较大的、遍及多个州的SARS-CoV-2进化枝。随着检测能力的提高和更多的病毒基因组序列从新的地点获得,就有可能对在美国各地传播的病毒进行更多颗粒重建。具体来说,阐明在康涅狄格州收集到的病毒基因组与邻近州(特别是像纽约这样疾病负担较重的州)的病毒基因组的系统发育关系,将提高他们对至关重要的州际动态的理解。

7.Cell:开发出利用CRISPR抵抗流感病毒和SARS-CoV-2的新型抗病毒策略
doi:10.1016/j.cell.2020.04.020


虽然大多数正在进行的疫苗临床试验通过诱导人类免疫系统识别冠状病毒蛋白或减毒病毒并减少病毒进入细胞来发挥作用,但是,在一项新的研究中,来自美国斯坦福大学等多家研究机构的研究人员提出一种替代性抗病毒方法,它依赖于一种基于CRISPR的系统,用于识别和降解细胞内病毒基因组及其产生的病毒mRNA(图1B)。靶向正义基因组和病毒mRNA以同时降解用于病毒复制和基因表达的病毒基因组模板,这将有望稳健地限制病毒复制。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza”。

 

 

图1.图片来自Cell, 2020, doi:10.1016/j.cell.2020.04.020。


在这项新的研究中,这些研究人员在人细胞中开发出一种预防性抗病毒CRISPR策略(Prophylactic Antiviral CRISPR in huMAN cells,简称PAC-MAN)。作为一种基因干预的形式,PAC-MAN靶向SARS-CoV-2和IAV,并且可能靶向所有冠状病毒。他们构建出一种生物信息学管道,在许多测序的SARS-CoV-2基因组中确定高度保守的区域,并利用CRISPR-Cas13d靶向这些保守性区域以进行病毒序列降解。

这些研究人员证实这种方法能够切割SARS-CoV-2片段,并减少人肺上皮细胞中的病毒RNA数量。他们的生物信息学分析揭示出6个crRNA能够靶向91%的已被测序的冠状病毒,以及22个crRNA能够靶向所有已被测序的冠状病毒。通过使用靶向同一病毒的不同区域或者不同冠状病毒毒株的crRNA文库,这种方法可能会对冲病毒进化和逃逸,也可能用来抵御未来出现的相关致病病毒。虽然这一策略在临床上应用之前还有一些障碍需要克服,但PAC-MAN有可能成为一种新的抗病毒策略。

8.Cell:新研究绘制出SARS-CoV-2的高分辨率基因图谱,并指出这种病毒的基因组仅由9个亚基因组RNA组成
doi:10.1016/j.cell.2020.04.011


在1977年,Jean Medawar和Peter Medawar写道,病毒“只是包裹在蛋白中的一条坏消息”。SARS-CoV-2中的“坏消息”是这种新型冠状病毒以非常长的核糖核酸(RNA)分子的形式携带它的神秘的基因组。在与COVID-19大流行的斗争中,世界似乎迷失了方向,无法发现这种冠状病毒(SARS-Cov-2)的组成。作为一种RNA病毒,SARS-Cov-2进入宿主细胞并复制它的基因组RNA(gRNA),并产生许多较小的称为“亚基因组RNA(subgenomic RNA)”的RNA。这些亚基因组RNA用于合成SARS-Cov-2所需的各种蛋白(刺突蛋白和包膜蛋白等)。因此,这些较小的RNA是干扰这种新型冠状病毒征服我们的免疫系统的良好靶标。尽管最近的研究报道了SARS-Cov-2的RNA基因组的序列,但是它们只能预测它的基因可能在哪里,从而让这个世界仍然迷失方向。

在一项新的研究中,来自韩国基础科学研究院、首尔大学和韩国疾病预防控制中心的研究人员成功地剖析了SARS-CoV-2 RNA基因组的结构。他们通过实验证实了这些预测的亚基因组RNA的存在,并且它们可经核糖体翻译为病毒蛋白。此外,他们分析了每个亚基因组RNA的序列信息,并揭示了这种病毒的基因在基因组RNA上的准确位置。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“The architecture of SARS-CoV-2 transcriptome”。论文通讯作者为韩国基础科学研究院RNA研究中心的Kim V. Narry教授和Chang Hyeshik教授。

Kim说,“我们不仅详细描述了SARS-CoV-2的结构,而且还发现了许多新的病毒RNA和这些病毒RNA上存在的多种未知的化学修饰。我们的研究提供了SARS-CoV-2的高分辨率图谱。该图谱将有助于了解这种病毒如何复制以及它如何逃避人类防御系统的监视。”

先前已知10个亚基因组RNA组成了SARS-CoV-2的病毒颗粒结构。但是,这些研究人员证实实际上仅存在9个亚基因组RNA,这就使得剩下的一个亚基因组RNA作废了。他们还发现,由于RNA融合和缺失事件的发生,存在数十种未知的亚基因组RNA。

9.Cell:重磅!体外研究表明试验用药物APN01可显著阻断SARS-CoV-2感染
doi:10.1016/j.cell.2020.04.004


在一项新的研究中,来自加拿大、瑞典、西班牙和奥地利的研究人员发现一种试验用药物可有效阻断SARS-CoV-2感染宿主所使用的细胞进入受体。这一发现有望开发出一种阻断这种新型冠状病毒早期感染的治疗方法。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2”。针对SARS-CoV-2及其在细胞水平上与宿主细胞相互作用的关键方面,以及这种病毒如何感染血管和肾脏,这项研究提供了新的见解。

论文共同通讯作者、加拿大英属哥伦比亚大学生命科学研究所所长Josef Penninger教授说,“我们希望我们的结果对治疗这种史无前例的疫情的新型药物的开发产生影响。这项研究源于学术研究人员和公司之间的惊人合作,包括来自位于温哥华市的STEMCELL Technologies公司的Ryan Conder博士及其在胃肠道方面的研究团队、来自西班牙的Nuria Montserrat、来自多伦多市的Haibo Zhang博士和Art Slutsky博士,尤其是来自瑞典的Ali Mirazimi及其在传染生物学方面的研究团队。他们日夜不懈地工作了几个星期,旨在更好地了解这种疾病的病理和提供突破性的治疗选择。”

Slutsky博士说,“我们的新研究提供了极其需要的直接证据表明一种称为APN01(human recombinant soluble angiotensin-converting enzyme 2, 人重组可溶性血管紧张素转化酶2, 简称hrsACE2)的药物可作为一种抗病毒药物用于治疗COVID-19。欧洲生物技术公司Apeiron Biologics即将在临床试验中测试这种药物。”

在这项新研究分析的细胞培养物中,hrsACE2将SARS-CoV-2的病毒载量抑制了1000~5000倍。在由人干细胞培养出的人类血管和肾脏类器官中,这些研究人员证实这种病毒可以直接感染这些组织并在其中进行自我复制。这提供了有关这种疾病发展以及严重的COVID-19病例出现多器官衰竭和心血管损伤的重要信息。临床级hrsACE2还减少了这些体外培养出的人体组织中的SARS-CoV-2感染。

10.Cell:我国科学家从结构和功能角度揭示SARS-CoV-2利用人ACE2进入细胞机制
doi:10.1016/j.cell.2020.03.045


病毒感染始于病毒颗粒与宿主表面细胞受体的结合。因此,受体识别是病毒的细胞和组织嗜性(tropism)的一个重要决定因素。此外,病毒结合其他物种的相应受体的功能获得也是物种间传播的先决条件。有趣的是,除了HCoV-OC43和HKU1均与糖分子结合从而与细胞附着外,其他的四个人类冠状病毒均将蛋白肽酶识别为受体。HCoV-229E与人氨基肽酶N(hAPN)结合,而MERS-CoV与人二肽基肽酶4(hDPP4或hCD26)相互作用。尽管SARS-CoV和hCoV-NL63属于不同的冠状病毒属,但是它们均与人类血管紧张素转化酶2(hACE2,即人ACE2)相互作用以进入宿主细胞。在COVID-19疫情爆发后,中国科学家迅速确定SARS-CoV-2也利用hACE2进入细胞。

 

 

图片来自Cell, 2020, doi:10.1016/j.cell.2020.03.045。


在冠状病毒中,这种进入过程是由嵌入包膜的位于病毒表面的刺突糖蛋白(S蛋白)介导的。在大多数情况下,S蛋白会被宿主蛋白酶切割为分别负责受体识别和膜融合的S1和S2亚基。S1可以进一步分为N末端结构域(NTD)和C末端结构域(CTD),两者都可以充当受体结合实体(比如,SARS-CoV和MERS-CoV都利用S1 CTD识别受体,因而称为受体结合结构域(RBD),然而小鼠肝炎冠状病毒利用它的S1 NTD与受体结合。在此之前,SARS-CoV-2 S蛋白中负责与hACE2相互作用的区域仍然是未知的。

在一项新的研究中,来自中国科学院、深圳市第三人民医院、山西农业大学、安徽大学、四川大学、中国科技大学和香港大学的研究人员利用免疫染色和流式细胞仪测定技术,首先鉴定出S1 CTD(SARS-CoV-2-CTD)是SARS-CoV-2中与hACE2受体相互作用的关键区域。他们随后解析出SARS-CoV-2-CTD与hACE2结合在一起时的分辨率为2.5 ?的晶体结构,揭示了一种整体上与SARS-CoV RBD(下称SARS-RBD)相类似的受体结合模式。但是,与SARS-RBD相比,SARS-CoV-2-CTD与hACE2形成更多的原子相互作用,这与显示更高的受体结合亲和力的数据相关。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Structural and functional basis of SARS-CoV-2 entry by using human ACE2”。

值得注意的是,一组单克隆抗体(mAb)以及针对SARS-S1/RBD的鼠多克隆抗血清无法与SARS-CoV-2 S蛋白结合,这表明SARS-CoV和SARS-CoV在抗原性上存在显著差异,并且提示着先前开发的基于SARS-RBD的候选疫苗不太可能对SARS-CoV-2预防有任何临床益处。

11.全文编译!复旦大学在Cell期刊上发文,从基因组学角度揭示SARS-CoV-2的起源和出现
doi:10.1016/j.cell.2020.03.035


新型人类冠状病毒SARS-CoV-2(之前称为2019-nCoV)的持续大流行引起了全球的极大关注。我们和中国的其他人参与了对这种病毒的初始基因组测序。在本文中,我们描述了针对SARS-CoV-2的出现,这些基因组数据揭示了什么,并讨论了我们对其起源理解上所存在的差距。

在英国爱丁堡大学Andrew Rambaut博士的帮助下,我们于2020年1月11日(格林威治标准时间, GMT)早些时候在开放存取的virological.org网站(http://virological.org/)上发布了这种病毒的基因组序列。不久之后,中国疾控中心在公众可访问的GISAID数据库(https://www.gisaid.org/)上类似地发布了SARS-CoV-2基因组序列(以及相关的流行病学数据)。在撰写本文时,已有近200个SARS-CoV-2基因组可公开获得,这代表了来自中国及其他地区的这种病毒的基因组多样性,并提供了可自由获取的全球资源。重要的是,SARS-CoV-2基因组序列数据的发布促进了诊断测试和感染性克隆(infectious clone)的快速开发。研发有效疫苗和抗病毒药物的竞赛正在进行中,而且针对抗病毒药物的临床试验正在逐步展开。

尽管SARS-CoV和MERS-CoV与SARS-CoV-2密切相关并且都有蝙蝠宿主,但这两种病毒之间的生物学差异却很明显。如上所述,SARS-CoV-2的传染性明显更高,从而导致与SARS-CoV和MERS-CoV完全不同的流行病学动态。在后两种病毒中,病例数的增长相对较慢,而MERS-CoV从未完全适应人类传播:大多数病例是由于阿拉伯半岛的骆驼溢出造成的,仅零星地发生人与人之间的传播。相比之下,SARS-CoV-2在当地的显著传播最让人吃惊。确定支撑这种传播能力的病毒学特征显然是当务之急。

SARS-CoV-2似乎将不可避免地成为人类中的第五种地方性冠状病毒(其他四种为HCoV-OC43、HCoV-229E、HCoV-NL63和HCoV-HKU1),并且目前正在完全易感人群中传播。冠状病毒显然具有跨越物种界限并适应新宿主的能力,这使得预测未来会有更多的病毒出现变得很简单,不过尚不清楚为何相比于一些其他的RNA病毒,冠状病毒具有这种能力。至关重要的是,对动物冠状病毒的监视应包括蝙蝠以外的动物,这是因为中间宿主的作用可能非常重要,从而为病毒在人类中的出现提供了更直接的途径。

鉴于野生动物中病毒的多样性以及它们的持续进化,可以说,降低未来疫情爆发风险的最简单最具成本效益的方法是尽可能限制我们对动物病原体的接触。尽管我们与动物世界的亲密关系意味着我们无法建立坚不可摧的屏障,但是针对非法野生动物贸易采取更强有力的行动,以及将所有野生哺乳动物(也许还有禽类)从湿货市场中清除将提供一个重要的缓冲。

12.Cell:重磅!揭示新型冠状病毒SARS-CoV-2刺突糖蛋白的结构、功能和抗原性
doi:10.1016/j.cell.2020.02.058


在一项新的研究中,美国华盛顿大学医学院生物化学系的David Veesler博士及其团队报道人ACE2可调节SARS-CoV-2 S蛋白介导的细胞进入,从而确定它是这种新出现的冠状病毒的功能性受体。SARS-CoV-2 S蛋白的结构域B与人ACE2结合的亲和力与来自与2002-2003年SARS疫情相关的SARS-CoV分离株的S蛋白的结构域B相当,这表明SARS-CoV-2 S蛋白的结构域B与人ACE2具有较高的结合亲和力。与人ACE2的紧密结合可以部分解释SARS-CoV-2在人类中的有效传播,就像SARS-CoV的情况一样。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein”。

他们鉴定出在SARS-CoV-2 S蛋白的S1/S2亚基边界存在意料之外的弗林蛋白酶(furin)切割位点,这个位点在S蛋白的生物合成过程中被切割,这种新特征可将这种冠状病毒与SARS-CoV和SARSr-CoV区分开来。正如针对一些高致病性禽流感病毒和致病性新城疫病毒的报道那样,移除这种切割基序会适度影响SARS-CoV-2 S蛋白介导的VeroE6或BHK细胞进入,但是这可能有助于扩大这种冠状病毒的宿主趋向性。

他们解析出SARS-CoV-2 S蛋白胞外结构域三聚体的低温电镜结构,并揭示它具有多个结构域B构象,这使人想起了先前有关SARS-CoV S蛋白和MERS-CoV S蛋白的报道。他们证实SARS-CoV S蛋白小鼠多克隆血清有效抑制SARS-CoV-2 S假病毒进入靶细胞。这些结果为设计可广泛预防SARS-CoV-2、SARS-CoV和SARS-CoV的疫苗铺平了道路。

13.Cell:重磅!揭示新型冠状病毒SARS-CoV-2进入宿主细胞机制
doi:10.1016/j.cell.2020.02.052


冠状病毒的刺突(S)蛋白(下称S蛋白)有助于病毒进入靶细胞。细胞进入取决于S蛋白的表面亚基S1与细胞受体的结合,这种结合有助于病毒附着至靶细胞的表面。另外,细胞进入需要通过细胞蛋白酶激活S蛋白(S protein priming),这需要在S蛋白的S1/S2和S2'位点切割这种蛋白,并允许病毒膜和细胞膜融合,这一过程由S蛋白的S2亚基驱动。SARS-CoV S蛋白以血管紧张素转换酶2(ACE2)作为进入受体,并利用细胞丝氨酸蛋白酶TMPRSS2激活S蛋白。已在原子水平上阐明了SARS-CoV S/ACE2界面,发现ACE2的使用效率是SARS-CoV传播能力的关键决定因素。SARS-CoV S蛋白和SARS-CoV-2 S蛋白具有大约76%的氨基酸序列一致性(sequence identity)。然而,人们仍不清楚SARS-CoV-2 S蛋白是否像SARS-CoV S蛋白那样使用ACE2和TMPRSS2进入宿主细胞。

在一项新的研究中,德国研究人员提供证据表明SARS-CoV-2的宿主细胞进入依赖于SARS-CoV受体ACE2,并且可以被临床证明的细胞丝氨酸蛋白酶TMPRSS2抑制剂阻断,而且TMPRSS2被SARS-CoV-2用于S蛋白激活。此外,这项研究还发现针对SARS-CoV产生的抗体反应可以至少部分地抵御SARS-CoV-2感染。这些结果对人们对SARS-CoV-2的可传播性和发病机理的理解具有重要意义,并揭示了进行治疗性干预的靶标。相关研究结果以论文手稿的形式在线发表在Cell期刊上,论文标题为“SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically-proven protease inhibitor”。

 

 

图片来自Cell, 2020, doi:10.1016/j.cell.2020.02.052。


这一关于SARS-CoV-2利用S蛋白与ACE2的结合进入宿主细胞的发现也被Zhou和他的同事们报道过(Nature, 2020, doi:10.1038/s41586-020-2012-7),它提示着这种冠状病毒像SARS-CoV那样靶向一系列细胞。在肺部,SARS-CoV主要感染肺细胞和巨噬细胞。然而,ACE2的表达不仅限于肺部,而且还观察到SARS-CoV在ACE2+组织中的肺外扩散。虽然还需要比较SARS-CoV S蛋白和SARS-CoV-2 S蛋白对ACE2的亲和力,但是这些研究人员认为可以预期SARS-CoV-2也会如此。

14.Cell:关于新型冠状病毒,我们都知道了什么?
doi:10.1016/j.cell.2020.02.027


冠状病毒SARS-CoV-2开始在全球蔓延,给不少国家都带来了严重影响。近日,来自中国在内的多国专家在Cell杂志上发文表达了他们对此次疫情的了解和看法,也许可以帮助我们更全面的了解此次疫情。

复旦大学上海公共卫生诊所中心、中国疾病预防控制中心 张永振表示:2019年12月,中国湖北省武汉市出现严重呼吸道疾病。截至2020年2月27日,已报告至少78630例确诊病例,包括至少2747例死亡。不幸的是,这种疾病已经在全球蔓延。病原体是一种新型冠状病毒,现在被称为SARS-CoV-2,在中国很快被发现和鉴定。尽管我们知道自然 界中存在着前所未有的病毒遗传多样性,但此次疫情进一步表明,在预测新的致病病原体何时、何地以及如何出现方面存在相当大的不确定性。

系统发育分析表明,SARS-CoV-2与一组SARS样冠状病毒密切相关。然而,目前还不清楚这种病毒来自何处,以及最初是如何传播给人类的。与其他人畜共患病病原体如汉坦病毒和沙状病毒不同,到目前为止,我们还没有在动物体内发现与人类相同的SARS病毒。幸运的是 ,自2004年以来,SARS病毒就没有出现在人类身上。相比之下,这种新病毒似乎有更强的人际传播能力。与人类的主要病毒相比,我们对病毒是否变化、如何变化以及这些变化对人类流行的影响所知甚少。在中国和其他地方,如果感染者没有临床症状,控制和预防该病 就特别困难。

 

 

其他新闻动态

创建时间:2021-02-03 09:00