应用案例:“眼见为实”超高速视频级原子力显微镜实时成像观察CRISPR基因编辑过程

应用案例(超高速视频级原子力显微镜-HS-AFM):“眼见为实”超高速视频级原子力显微镜实时成像观察CRISPR基因编辑过程

翻译整理:北京佰司特科技有限责任公司     

超高速视频级原子力显微镜(High-Speed Atomic Force Microscope,HS-AFM)由日本 Kanazawa 大学 Prof. Ando 教授团队研发,日本RIBM公司(生体分子计测研究所株式会社,Research Institute of Biomolecule Metrology Co., Ltd)商业化的产品,可以达到视频级成像的商业化原子力显微镜。HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够在液体环境下超快速动态成像,分辨率为纳米水平。样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。超高速视频级原子力显微镜HS-AFM主要有两种型号,SS-NEX样品扫描(Sample-Scanning HS-AFM)以及PS-NEX探针扫描(Probe-Scanning HS-AFM)。推出至今,全球已有100多位用户,发表 SCI 文章 300 余篇,包括Science, Nature, Cell 等顶级杂志。

自2012年以来,研究人员常用一种叫做CRISPR的强大“基因组编辑”技术对生物的DNA序列进行修剪、切断、替换或添加。CRISPR来自微生物的免疫系统,这种工程编辑系统利用一种酶,能把一段作为引导工具的小RNA切入DNA,就能在此处切断或做其他改变。 

 

CRISPR已经成为生命科学领域受关注的基因编辑技术,其效果得到大家一致认可。虽然科学家可通过RT-PCR、WB等方法间接证明CRISPR的功能,但仍未有直接的证据来证实。究其原因:一是生物分子间的相互作用速率快,需要高速的成像手段才能捕捉到;二是生物分子比较小,通常为纳米级,普通显微镜由于受光学衍射限所限不能分辨。日本Kanazawa University的科学家利用超高速视频级原子力显微镜(High-Speed Atomic Force Microscope,HS-AFM)成功观察到了实时CRISPR基因编辑,为CRISPR技术的有效性提供了直接的证据。 

超高速视频级原子力显微镜(High-Speed Atomic Force Microscope,HS-AFM)由日本 Kanazawa 大学 Prof. Ando 教授团队研发,日本RIBM公司(生体分子计测研究所株式会社,Research Institute of Biomolecule Metrology Co., Ltd)商业化的产品,可以达到视频级成像的商业化原子力显微镜。HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够在液体环境下超快速动态成像,分辨率为纳米水平。样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。超高速视频级原子力显微镜HS-AFM主要有两种型号,SS-NEX样品扫描(Sample-Scanning HS-AFM)以及PS-NEX探针扫描(Probe-Scanning HS-AFM)。推出至今,全球已有100多位用户,发表 SCI 文章 300 余篇,包括Science, Nature, Cell 等顶级杂志。

相较于目前市场上的原子力显微镜成像设备,HS-AFM突破了 “扫描成像速慢”的限制,扫描速度高可达 20 frame/s,并且有 4 种扫描台可供选择。样品无需特殊固定染色,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。液体环境下直接检测,超快速动态成像,分辨率为纳米水平。探针小,适用于生物样品;悬臂探针共振频率高,弹簧系数小,避免了对生物样品等的损伤。悬臂探针可自动漂移校准,适用于长时间观测。采用动态PID控制,高速扫描时仍可获得清晰的图像。XY轴分辨率2nm;Z轴分辨率0.5nm。 HS-AFM不仅拥有超高扫描速率与原子级别分辨率,而且具有操作的简易性,使得对单分子动态过程的捕捉变得十分方便,为科研工作者研所和理解生物物理、生物化学、分子生物学、病毒学以及生物医学等领域的单分子动态过程提供了一款强大的工具。 全新的HS-AFM采用了新的高频微悬臂架构,更低噪音、更高稳定性的2控制器,高速扫描器,缓冲防震设计,主动阻尼,动态PID,驱动算法优化,多种前沿技术,可以实现在超高速下获取高分辨的生物样品信息。新系统整合了基于工作流程的操作软件,直观的用户界面与流程化、自动化的设置使得研究人员可以专注于实验设计,不需要复杂的操作和条件设置,快速获取数据,加速研究的产出。

HS-AFM结果直观显示构象差异: 

HS-AFM视频结果显示apo-Cas9为柔性构象(flexible conformations),而Cas9–RNA则为稳定的双叶型构象(stable bilobed architecture)。 

Cas9-RNA介导的PAM依赖性DNA识别 

Cas9-RNA靶向定位到目的DNA,形成Cas9–RNA–DNA复合体。

Cas9-RNA对目的DNA进行剪切  

 在Mg2+存在的条件下,Cas9-RNA对目的DNA进行特异性剪切。

 原文链接:https://www.nature.com/articles/s41467-017-01466-8 

这项工作的完成主要借助了日本RIBM公司研发的超高速视频原子力显微镜HS-AFM,HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够实现在液体环境下超快速动态成像,分辨率为纳米水平。待测样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。推出至今,全球已有100多位用户,发表SCI论文300余篇,其中包括Science, Nature, Cell 等顶级杂志。 

https://www.best-sciences.com/productinfo/100797.html

新品推荐——日本RIBM公司研发的超高速视频原子力显微镜HS-AFM来到中国

为了更好地服务国内客户,北京佰司特科技有限责任公司将这款超高速视频级原子力显微镜引进中国,如果您有科研上的需要,欢迎致电联系我们!

地址: 北京市北京市朝阳区劲松三区甲302楼华腾大厦7层703B室

电话: 010-67751532 邮箱: best_science@163.com

 

北京佰司特科技有限责任公司 (https://www.best-sciences.com):

类器官串联芯片培养仪-HUMIMIC;灌流式细胞组织类器官代谢分析仪-IMOLA;光片显微镜-LSM-200;

蛋白质稳定性分析仪-PSA-16;单分子质量光度计-TwoMP;超高速视频级原子力显微镜-HS-AFM;

全自动半导体式细胞计数仪-SOL COUNT;农药残留定量检测仪—BST-100;台式原子力显微镜-ACST-AFM;微纳加工点印仪-NLP2000/DPN5000;

 

其他新闻动态

创建时间:2023-04-12 15:07